

Highly Accelerated Thermal Shock (HATS[™]) Testing for PCB Hole Reliability

Bob Neves President Integrated Reliability Test Systems, Inc.

December 2003

INTEGRATED RELIABILITY TEST SYSTEMS, INC. • 1.714.756.5527

Outline

- Acknowledgements
- History of Thermal Shock
- MIL-STD and IPC Test Methods
- Experimental Background
- Delphi Standards
- HATS[™] Test System
- Comparison Data
- Final Thoughts

Acknowledgements

Rick B. Snyder

Delphi Delco Electronics Systems, Inc. Kokomo, IN

Timothy A. Estes Conductor Analysis Technologies, Inc. Albuquerque, NM

History of Thermal Shock

- Thermal shock testing has been around for a long time
- Thermal shock tests have been used to determine PCB & PCA reliability
- Air-to-air methods have longest history in thermal shock
- Significant disadvantages in cost and time
 - Costly to run dual-chamber and liquid systems (electricity or liquid nitrogen)
 - Air-to-air methods take a very long time

History of Thermal Shock

- Reliability models based upon coefficient of thermal expansion (CTE) of the device under test (DUT)
- Difference in thermal extremes (delta T) determines overall expansion of DUT
 - Example: -40 to +145C is an 185C delta T
- Dual-chamber air-to-air methods require difficult sample fixturing and wiring
- Monitoring typically infrequent
 - Finding glitches almost impossible

MIL-STD-202G, Method 107

- Originated in the late 1950's
 - Test method last updated in 1984
- Contains both air-to-air & liquid-to-liquid parameters
- Based upon two chamber model
 - Hot & cold for either air or liquid
- Dwell time based upon mass of samples tested
 - Time conservatively estimated for sample to reach equilibrium
- Most methods are built upon this standard

MIL-STD-202G, Method 107

- Transition time between chambers is less than 5 minutes
- Air-to-air methods
 - Lots of thermal mass in transfer cage used to move DUT between temperature zones
 - Low heat transfer rate to DUT
- Liquid-to-liquid methods
 - High heat transfer rate to DUT
 - Difficult to move samples between liquids
 - Liquids are volatile & very expensive

Method 107, Air-to-Air

Category	Lower Temperature (C)	Upper Temperature (C)
A	- 5 5	8 5
В	-65	1 2 5
С	-65	200
D	-65	350
E	-65	500
F	-65	1 5 0

Air-to-Air Categories

Mass (g)	Dwell Time (minutes)
< 28	1 5
28 to 136	3 0
136 to 1,360	6 0
1,360 to 13,600	120
13,600 to 136,000	240
> 136,000	480

Air-to-Air Dwell Times

Method 107, Liquid to Liquid

Category	Lower Temperature (C)	Upper Temperature (C)		
AA	0	100		
BB	-65	125		
CC	-65	150		
DD	-65	200		

Liquid-to-liquid Categories

Mass (g)	Dwell Time (minutes)	
< 1.4	0.5	
1.4 to 14	2	
14 to 140	5	

Liquid-to-liquid Dwell Times

IPC-TM-650, TM 2.6.7 Series

- 2.6.7A: Thermal Shock and Continuity -Printed Board
- 2.6.7.1: Thermal Shock Polymer Solder Mask Coatings
- 2.6.7.1A: Thermal Shock Conformal Coating
- 2.6.7.2A: Thermal Shock, Continuity and Microsection - Printed Board
- 2.6.7.3: Thermal Shock Solder Mask

IPC-TM-650, TM 2.6.7 Series

- IPC methods are based upon the "MIL-STD" methods
- Small distinctions between methods for product technology
- Geared specifically to PCB's and related materials
- Upper temperature is set to be below glass transition temperature (Tg) of laminate materials

Experimental Background

- Objective compare different thermal shock test methodologies
- Delphi test panels fabricated by 3 different PCB manufacturers
- 6-layer 0.031-inch CAT process capability panels
 - CAT via formation modules (used for Delphi and HATS[™] test)
 - IST coupons
- Comparison testing
 - Delphi air-to-air cycle (-40 to +145C)
 - Modified IST cycle (+25 to +170C)
 - HATS[™] cycle (Delphi temperature cycle)

CAT Process Capability Panel

Test Panel Pre-Conditioning

- Panels subjected to 6 cycles of assembly pre-conditioning temperature profile
 - 2 minute preheat from +25 to +183C
 - I minute dwell between +183 to +215C
 - 3 minute cool-down
- Panels retested to determine any changes in coupon via net resistance
 - No significant changes were found

Delphi Standards

- 25 minute dwell at each temperature extreme
- Less than 5 minute transfer between extremes
- 1000 cycles \rightarrow 41.7 days...(a long time)
- Temperature extremes and delta T based upon end product use
- Use of periodic resistance measurement to monitor reliability
 - Periodic monitoring misses actual failure point
- Delphi uses custom boards with different hole technologies

Delphi Application Specific Requirements

Class	Cycle	Operating Temperature	Typical Applications
A	-40 to 105C	85C	Passenger compartment
В	-40 to 125C	105C	Underhood Off- engine
С	-40 to 145C	125C	Underhood On- engine
D	-40 to 165C	145C	High performance/Chip- on-board/High dissipation components

HATS[™] Test System

- Highly Accelerated Thermal Shock (HATS[™])
- Partnership Conductor Analysis Technologies & Microtek Labs
 - New company Integrated Reliability Test Systems, Inc.
- Air-to-air methodology with stationary coupons
 - Single chamber, high volume airflow with large heat transfer capacity
 - 36 coupons (144 nets) per chamber load
- Thermal specifications
 - Temperature range: -60 to +160C
 - Air transition time: 30 seconds (-60 to +160C)
 - Air Stability: ± 2C
- Data acquisition
 - Mode: 4-wire resistance
 - Accuracy: 2% of resistance value
 - Precision: 2% resistance CoV
 - Speed: 10 readings per second

HATS[™] Test System

- Sample sizes ranging from
 - 0.5 inch x 1.0 inch (smallest)
 - 1.0 inch x 2.0 inch (largest)
- Cycles times for a -40 to 145C cycle
 - 0.031" coupons approximately 7 minutes
 - 500 cycles in 2.5 days
 - 0.125" coupons approximately 10 minutes
 - 500 cycles in 3.5 days
- Capable of simulating test temperatures of current induced (CITC or IST) test methodologies

HATS[™] System

TM

Online Coupon Generator

- www.HATS-Tester.com
- Gerber files immediately emailed
- 4 independent nets per coupon
- Nets can be "Through", "Blind", "Buried" or "Stacked"
- Parameters for each net
 - Hole size
 - Land size
 - Grid size
 - Interconnect sequences
 - Include/exclude teardrops
 - Include/exclude non-functional lands
 - Include/exclude soldermask coverage
 - Include/exclude ground planes

HATS[™] Test Coupons

1.0 x 0.5 inch Coupon

1.0 x 1.0 inch Coupon

2.0 x 1.0 inch Coupon

HATS[™] Test Data

Delphi/PCQR² Reliability Study

Hole (mils)	Land (mils)	Annular Ring (mils)	Aspect Ratio	Interconnect Sequence
8	14	3	3.8:1	1-4-2-5-3-6
8	20	6	3.8:1	1-4-2-5-3-6
10	16	3	3.1:1	1-4-2-5-3-6
10	22	6	3.1:1	1-4-2-5-3-6

Delphi Data

Manufacturer A

Manufacturer C

IST Data

Manufacturer A

HATS[™] Data

Manufacturer C

IPC D-36 PCQR² Adoption of HATS[™]

- PCQR² committee adopted HATS[™] test method for relative reliability data
 - Shortened Delphi Class "C" cycle time for under hood on-engine requirements
 - Uses standard CAT via formation modules from PCQR² test panels
- PCQR² Database relative reliability test cycle
 - 500 cycles or until 10% resistance change
 - -40C to +145C
- www.pcbquality.com

Test Methodology Differences

Attribute	HATS	IST	Dual-Chamber
Thermal exchange	Air-to-air	Current induced	Air-to-air
Number of coupons per load	36	6	Custom
Nets per coupon	4	2	Custom
Total number of nets per load	144	12	Custom
Typical temperature range (C)	-60 to +160	+25 to +150	-55 to +160
Delta T (C)	220	125	215
Typical cycle time (minutes)	14	5	60
Precision 4-wire resistance	Yes	Yes	Difficult

Test Methodology Differences

- HATS[™] method provided 4.3 times shorter cycle time than Delphi dual-chamber method
 - Same temperature range and delta T as Delphi Class "C" cycle
 - Uses air as the transfer medium
- IST cycle time was shortest
 - Lowest temperature of IST cycle is 65C higher than Delphi Class "C" cycle
 - Lower delta T than Delphi method, +145C vs. +185C
 - Upper temperature of IST test method
 - Exceeds T_a of many laminate materials
 - 25C higher than Delphi method

Integrated Reliability Test Systems, Inc.

Bob Neves

Microtek Laboratories 714.999.1616 bobneves@HATS-Tester.com

Steven To WKK International stephen_to@wkk.com.hk

Tim Estes

Conductor Analysis Technologies 505.797.0100 tim.estes@cat-test.info

www.HATS-tester.com